edexcel 쁯

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 2CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2015
Publications Code UG041070
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 b iv	M1 (similarity) one electron/same number of electrons in outer shell M2 (difference) different number of (electron) shells / T has (one) more (electron) shell / J has (one) less (electron) shell /J has 2 shells and T has 3 $/ J$ is 2.1 and T is 2.8 .1	Accept rings and energy levels in place of shells in M1 and M2 Accept valence electrons in place of outer shell electrons Accept configuration ends in 1 Accept same outer shell Accept 2 electrons in first/inner shell Accept going down the column there is 1 more shell Ignore T has an extra number Ignore T has 8 more electrons	2
		Total 8 marks	

Question number	Answer	Notes	Marks
3 a	white		1
b	white		1
c	M1 $\frac{1000 \times 21 / 210}{100}$ M2 $(1000-210)=790\left(\mathrm{~cm}^{3}\right)$ OR M1 $100-21=79$ M2 $\frac{1000 \times 79}{100}=790\left(\mathrm{~cm}^{3}\right)$	Accept calculation based on any value in range 20-21\% M2 CQ on incorrect percentage of oxygen, but this must be stated Correct final answer with no working scores 2 marks	2
d	$\begin{array}{ll} \text { M1 } & \mathrm{n}(\mathrm{Mg})=0.12 \div 24 / 0.0050(\mathrm{~mol}) \\ \text { M2 } & (0.0050 \times 40=) 0.2(0)(\mathrm{g}) \\ \text { OR } & \\ \text { M1 } & \mathrm{m}(\mathrm{MgO})=\frac{40 \times 0.12}{24} \text { or } \frac{80 \times 0.12}{48} \\ \text { M2 } & =0.2(0)(\mathrm{g}) \end{array}$	Accept fraction 1/200 Correct final answer scores 2 marks	2
		Total 6 marks	

Question number	Answer	Notes	Marks
$4 \quad \text { c i }$ ii iii	to sterilise / disinfect (the water) OR to make it safe to drink $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}$ dissolve in / add to water	Accept kill bacteria / microbes / pathogens / microorganisms / (harmful) organisms / germs / viruses Ignore references to cleaning / purifying / bleaching / changing pH Ignore state symbols Accept mixing with water / bubbling through water / react with water / make aqueous Ignore adding to liquid	1 1 1
		Total 9 marks	

Question number	Answer	Notes	Marks
5 a	Any two of: - (same) volume of acid - (same) concentration of acid - (same) concentration of alkali - (same) rate of stirring / stir for the same time - (same) starting temperature / temperature of acid/alkali/solutions/room	Reject volume(s) of solutions Accept amount of acid as alternative to either of first two bullet points	2
b	M1 correct reference to accuracy / temperature rise M2 correct reference to insulation / heat loss	eg accuracy improved or increased / temperature rise greater or more accurate or closer to correct value(s) / final temperatures higher Accept temperatures more accurate Ignore just higher temperatures Ignore results more reliable / valid eg polystyrene is a (better) insulator / poorer conductor (than glass) / reduces heat loss / more heat trapped Ignore no heat loss Accept reverse argument for glass	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \(\begin{array}{llll}5 \& \mathrm{c} \& \mathrm{i} \\ \& \& \\ \& \& \\ \& \& \\ \& \& \& \text { ii }\end{array}\) \& \& \begin{tabular}{l}
Both values correct but in wrong order scores 1 mark (of M1 and M2) \\
M3 CQ on final and initial values \\
Accept heat / thermal energy given out or transferred to the surroundings \\
Reject just energy has been given out
\end{tabular} \& 3

1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 d	Any two of: - correct statement about first part of graph, identified as positive gradient / positive correlation / temperature increase / temperatures up to 30 or $32.5^{\circ} \mathrm{C}$ / volumes up to 20 or $22 \mathrm{~cm}^{3}$ / experiments 1-4 - correct statement about top of graph, identified as where lines cross / intersection / peak / maximum - correct statement about second part of graph, identified as negative gradient / negative correlation / temperature decrease / temperatures after 30 or $32.5^{\circ} \mathrm{C}$ / volumes after 20 or $22 \mathrm{~cm}^{3}$ or up to $40 \mathrm{~cm}^{3}$ / experiments 5-8	eg reaction continuing or acid being neutralised or some acid still unreacted or heat being produced eg reaction complete or all acid neutralised or neutralisation point reached or shows volume of alkali needed to neutralise acid eg further alkali causes cooling or sodium hydroxide absorbs heat or no reaction occurs or no acid left or alkali in excess Reject reaction becomes endothermic Ignore references to direct proportion / particle collisions / limiting reagents / rate of reaction	2
		Total 10 marks	

Question number	Answer	Notes	Marks
6 a i	carbon monoxide		1
ii	decreases capacity of blood (cells) to carry oxygen OR stops blood (cells) from carrying oxygen	Accept CO combines with haemoglobin forms carboxyhaemoglobin Accept CO displaces/replaces oxygen in haemoglobin Ignore CO combines with red blood cells Ignore references to suffocation / lack of oxygen in lungs stopping breathing / gas exchange Ignore just affects haemoglobin Reject destroys haemoglobin	1

Question number	Answer	Notes	Marks
8 a i	Ni/nickel has lost oxygen (atoms / ions) OR nickel ions gain electrons	Accept NiO/nickel oxide has lost oxygen Accept nickel(II) loses oxygen Ignore it loses oxygen / gains electrons Reject nickel oxide gains electrons Reject nickel loses oxygen molecules Reject any answer that does not refer to Ni or NiO	1
ii	M1 \quad equilibrium (position) shifts to right	Mark independently Ignore forward reaction favoured/occurs more readily/is faster / more product formed Accept heat / thermal energy given out Ignore just gives out energy	Ignore because stage 3 is decomposition which is endothermic/takes in heat
M2 (forward) reaction is exothermic	Ignore references to bond breaking and making and Le Chatelier's principle and different numbers of (gas) moles on each side and rate of reaction		

Question number	Answer	Notes	Marks
8 b ii	malleability (2 marks): M1 layers / sheets / planes / rows AND (positive) ions / atoms / particles M2 slide (over each other)	Reject molecules / protons / electrons M2 needs reference to either layers or equivalent OR ions/particles/atoms Allow OWTTE, eg slip / flow / shift / roll / move M2 DEP on mention of EITHER layers or equivalent OR mention of ions or equivalent Do not award M2 if protons / electrons / nuclei / molecules in place of ions, etc If reference to ionic bonding / covalent bonding / molecules / intermolecular forces, no M1 or M2 Accept sea of electrons Ignore free electrons Accept move / mobile in place of flow M4 DEP on mention of electrons Ignore reference to intermolecular forces for M3 and M4	4
	conductivity (2 marks):M3 - delocalised electrons		
	M4 - that flow (when a potential difference is applied)		
		Total	marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

